
An Introduction to
Terraform

Hello!

Jake Walsh
Senior Solution Architect @ CDW UK

@jakewalsh90
jakewalsh.co.uk

Please note – the views/opinions in this presentation are entirely my own. If in any doubt,
please check latest documentation etc!

Session
Goals

• What is Infrastructure as Code – and why
use it?

• What is Terraform?

• How Terraform Works & Why it’s relevant for
EUC Environments

• Getting Started – Installation

• Code Samples / Demo

What is Infrastructure as Code (IAC)?

✓ A method of managing and provisioning infrastructure resources via code.

✓ In most cases either uses imperative or declarative code.

✓ Often integrated into version control systems – e.g. Git.

✓ Can be edited and managed in most common tools and platforms – e.g. GitHub, Visual Studio
Code, Azure DevOps etc.

✓ Usually adopted as part of a wider DevOps Strategy.

✓Allows a move away from ClickOps and provides options to version control infrastructure
resources.

“build this”“do this”

Imperative

• Defines a task to be carried out

• In this example repeated executions would error –

as the VM already exists after 1 run

Declarative

• Defines infrastructure components to be created

• In this example repeated executions would result

in a message informing us that “no changes” are

required (as the VM is already built).

Cost – enables more rapid deployment, changes, test environments

etc.

Speed – faster deployment due to less manual intervention (no

ClickOps), easy testing, less human error etc. Enables DevOps

methods/practices.

Risk – reduced through testing, consistency of deployments, version

control etc.

Why use
Infrastructure as
Code?

Why use
Infrastructure as
Code?

Benefits Cycle

Repeatable

Speed of
Deployment

Minimize
Risk

Consistency
More

reliable than
Click Ops

Write once,
deploy many

times

Duplication

Other platforms are available…

https://en.wikipedia.org/wiki/Infrastructure_as_code

https://en.wikipedia.org/wiki/Infrastructure_as_code

What is Terraform?

• Terraform is an Infrastructure as Code Software tool, that can interact with a wide range of Platforms and
Environments, using Providers.

• Can be used in both Cloud and On-Premises environments. Can be used to combine on-premises and Cloud, or
Cloud and Cloud for example.

• Terraform comes in 3 main varieties:
• Community Edition – I will be using this to demo today!

• Terraform Cloud

• Terraform Enterprise

https://developer.hashicorp.com/terraform/intro

AWS, VMware, Azure, etc

https://developer.hashicorp.com/terraform/intro

What is Terraform?

• Terraform comes in 3 main varieties:

• Community Edition – I will be using this to demo today!

• Terraform Cloud

• Terraform Enterprise

https://www.terraform.io/

https://www.terraform.io/

What is Terraform?

• Terraform Cloud

• Terraform Enterprise

Authentication

• Demo / Lab Environments

Usually authenticate at the CLI or use a Service Principal

• Production Environments

Service Principal or a Managed Service Identity

https://learn.microsoft.com/en-us/azure/developer/terraform/authenticate-to-azure?tabs=bash

https://learn.microsoft.com/en-us/azure/developer/terraform/authenticate-to-azure?tabs=bash

Authentication

Providers

• Before we can run Terraform, we need to add a “Provider” to our Code. Providers
are plugins for Terraform that allow Terraform to interact with an external API.

• In simple Terms – providers enable communication with platforms or services
outside of Terraform

• For example – with Microsoft Azure, we would need to add the AzureRM Provider
to Terraform before we can interact with Azure.

https://registry.terraform.io/browse/providers

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

https://registry.terraform.io/browse/providers
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

AzureRM Provider

Microsoft Azure

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

What other
Providers are
available?

https://registry.terraform.io/browse/providers

https://registry.terraform.io/browse/providers

Process

1. Terraform code is typically arranged across a number of files,
known as “tf files”. (Because they have the extension TF)

2. These files define the infrastructure and its configuration (or
changes!) that we want Terraform to apply.

3. At the time of running Terraform, these files are analysed by
Terraform, and turned into an execution plan to apply our changes.

Terraform Stages

• Running Terraform involves a number of stages of deployment:

Terraform init

Terraform plan

Terraform apply

Terraform destroy

This stage carries out the execution plan, and implements the

changes. Note: this also runs plan.

This stage destroys the created infrastructure – use carefully!

This stage initialises the Terraform binaries, and downloads the

required providers, based on what we have defined.

This stage examines our TF files and provides an overview of

the infrastructure changes – by providing an execution plan.

The State File

Terraform must store information about your infrastructure within
a file known as the “State File”.

This is so that Terraform can work out changes required to the
infrastructure based on your code or configuration changes.

The State File can be stored locally, or remotely, depending on
the deployment type and needs.

• Local State – learning/testing/labs/development

• Remote State – using DevOps tooling or collaborating on code

https://developer.hashicorp.com/terraform/language/state

https://developer.hashicorp.com/terraform/language/state

Ways of Working – Local Example

1. Code creation

and modification

2. Code saved

into local folder

3. Terraform runs –

compares code to State

File

4. Infrastructure

created, updated,

or destroyed

Local Example:

All work done

on a single

machine.

Ways of Working – A Remote Example

1. Code creation

and modification

3. Terraform runs –

compares code to

State File

4. Infrastructure created,

updated, or destroyed

State File in Azure Storage

2. Code saved into remote

repository. With

Pipelines/Actions to run

Terraform.

Ways of Working – An even more Remote Example

1. Code creation and

modification

3. Terraform runs –

compares code to

State File

4. Infrastructure created,

updated, or destroyed

State File in Azure Storage

2. Code saved into remote

repository. With

Pipelines/Actions to run

Terraform.

Why is Terraform useful in the EUC World?

• Create infrastructure easily, repeatably, in different
locations/platforms/regions.

• Enables Rapid Development / Testing

• Cost Effective Test Environments – create on demand, destroy
once used.

• Scale up/down/in/out as required

• Expansion – use functions like count and variable methods like
maps

• Work safely and in a standardised way across distributed
teams.

• Write once, deploy many times.

• Enables Version control of EUC Infrastructure

Installing Terraform

https://developer.hashicorp.com/terraform/tutorials/azure-get-started/install-cli

Recommended minimum software:

• Terraform

• Visual Studio Code + Extensions

https://community.chocolatey.org/

choco install terraform -y
choco install azure-cli -y
choco install vscode -y

https://developer.hashicorp.com/terraform/tutorials/azure-get-started/install-cli
https://community.chocolatey.org/

Installing Terraform – VSCode Plugin

https://marketplace.visualstudio.com/items?itemName=HashiCorp.terraform

Features:

• Intellisense

• Syntax Validation and Highlighting

• Code Naviation

• Code Formatting

• Code Snippets

• Terraform Cloud Integration

https://marketplace.visualstudio.com/items?itemName=HashiCorp.terraform

A helping hand… Try GitHub Copilot!

Demo Time!

• Everything I am using today is available in my
Terraform-Azure repo:
https://github.com/jakewalsh90/Terraform-Azure

• All you need is Terraform, VSCode, Azure CLI, and an
Azure Subscription.

• We will explore & demo the following:

• Deployment of a Lab Environment

• Run through code files (whilst it deploys – or the
demo gods ruin my day).

• Changes if time permits

https://github.com/jakewalsh90/Terraform-Azure

Thank You &
Questions

	Slide 1: An Introduction to Terraform
	Slide 2: Hello! Jake Walsh Senior Solution Architect @ CDW UK @jakewalsh90 jakewalsh.co.uk
	Slide 3: Session Goals
	Slide 4: What is Infrastructure as Code (IAC)?
	Slide 5: Imperative
	Slide 6
	Slide 7
	Slide 8: Why use Infrastructure as Code? Benefits Cycle
	Slide 9: Other platforms are available…
	Slide 10: What is Terraform?
	Slide 11: What is Terraform?
	Slide 12: What is Terraform?
	Slide 13: Authentication
	Slide 14: Authentication
	Slide 15: Providers
	Slide 16: AzureRM Provider
	Slide 17
	Slide 18: What other Providers are available?
	Slide 19
	Slide 20: Process
	Slide 21: Terraform Stages
	Slide 22: The State File
	Slide 23: Ways of Working – Local Example
	Slide 24: Ways of Working – A Remote Example
	Slide 25: Ways of Working – An even more Remote Example
	Slide 26: Why is Terraform useful in the EUC World?
	Slide 27: Installing Terraform
	Slide 28: Installing Terraform – VSCode Plugin
	Slide 29: A helping hand… Try GitHub Copilot!
	Slide 30: Demo Time!
	Slide 31

